Many-core and GPU developments in the parallel ELectronic Structure Infrastructure library (ELSI)

ALCF Acknowledgement

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

Theory, Modeling, Simulation, and Experiment at the Nanoscale

Chemistry

Organic, inorganic, analytical biochemistry

Materials Science

Ceramics, Nanoclusters, Conducting polymers, Composites, oxides, metals Supramolecular chemistry

physical

Biosciences

Proteins, Nucleic acids, DNA, Compartments, organelles

Physics

Solid state Condensed matter

Future Devices

Sensing, manipulation, Catalysis, Molecular (nano) electronics and optics, Molecular medicine, prosthetics, energy conversion and storage materials

Understanding of the physics and chemistry

<u>Argonne is a center of excellence for Materials Research</u>

Usage of ASCR Facilities

 INCITE projects are targeted to a few, very large science projects.

 >50% of the time for allocations is spent in atomics scale calculations

2016 INCITE Allocations at ALCF

INCITE 60%, ALCC 30%, Discretionary 10%

"Phase diagram" of calculation cost in computational chemistry

"Phase diagram" of calculation cost in computational chemistry

Computational Chemistry Dilemma

- Computational chemistry
 simulations require accurate
 methods at meaningful scales
 (space,time), which consequently
 need large computing resources.
- A very few software for petaflop computations for electronic structure.
- Computer power duplicates every
 2 year.
- New architectures challenge programmers and users for science applications.
- Long life computer programs
 require large community support

Kohn-Sham scheme

Self-consistent GGA-DFT GGA-KS Hamiltonian $\hat{H}^{(0)}[\rho^{(0)}]$ self-consistent and $arphi_{\scriptscriptstyle i}^{(0)}$ RS-KS Hamiltonian $\hat{H}'[\rho' = \rho^{(0)}]$ ε'_i and $\rho_{\text{new}}^{(0)} = \sum_{i=1}^{\text{occ.}} |\varphi_i^i|^2$

Density Functional Theory

$$E_{Total} = E[\rho(\vec{r})]$$

Auxiliary KS function

$$\Psi^{KS} = \sqrt{N!} det |\varphi_1(\vec{r_1})...\varphi_N(\vec{r_B})|$$

Density as sum of orbital densities

$$\rho\left(\vec{r}\right) = \sum_{i} |\varphi_{i}\left(\vec{r}\right)|^{2}$$

Differential problem is now an Eigenvalue problem

2nd KS theorem: Exact ground state density minimizes *E*

Eigenvalue Solver dominates large calculations

 <u>a real</u> physical problems (layers graphene on SiC)

$$(6\sqrt{3} \times 6\sqrt{3}) - R30^{\circ}$$

*for one self-consistent step

3LG

3LG: 3 layer graphene on SiC 88044 basis functions 2324 atoms FHI-aims code

Mare Nostrum - Intel SandyBridge-EP E5-2670 ppn = 8, xHost, Codeversion 150203, poe

ELSI: ELectronic Structure Infrastructure

http://www.elsi-interchange.org

*Volker Blum

Volker Blum (Duke University)
Jianfeng Lu (Duke University)
Lin Lin (University of California at Berkeley)
Chao Yang (Lawrence Berkeley National Laboratory)
Alvaro Vazquez-Mayagoitia (Argonne National Laboratory)
Fabiano Corsetti (Imperial College, London)

A library to accelerate electronic structure simulations

Electronic Structure

Argonne **Leadership Computing** Facility

**NFS funded

ELPA

- Fast <u>dense</u> eigenvalue solver. Designed for <u>high-performance</u> architectures.
- Useful for electronic structure and many other applications. GPL license. F90 code.
- Uses a <u>Block-cyclic distribution</u> scheme mapping the group processors in a 2D grid. Relies on BLACS matrix parallelization layout.
- Uses efficiently external algebra libraries as BLAS, MKL, ESSL, etc.
- Main kernels in QR algorithms are hardcoded with intrinsic processor instructions (QPX, SSE, AVX, etc).
- Solves for real or complex, and for entire or partial number of eigenvalues

Support for:

PEXSI

Electron density could be evaluated without diagonalizing Kohn-Sham-Fock Matrix

$$\rho$$
=diag(Γ)

Pole expansion

$$\Gamma \approx Im \left[\sum_{i}^{M} \omega_{i} (H - z_{i} I)^{-1} \right]$$

Selected inversion using sparse matrix techniques

Massively parallel distributed memory implementation

- Can use 1-100K processors.
- OpenMP ready, GPU in progress.

Current support for: DGDFT, Siesta, CP2K, QuantumEspresso

- C++ code with interfaces for Fortran and C.
- Relies on SuperLU and Par/Metis.

LibOMM

Orbital Minimization Method.- Iterative minimization algorithm originally devised for linear-scaling DFT (SIESTA code)

$$E[C] = 2tr \left\{ \left[2\tilde{I} - \tilde{S}_w \right] \tilde{H}_w \right\}$$

The basic strategy: find the N/2 Wannier functions describing the occupied subspace for an N-electron system by direct unconstrained minimization

Advantages:

- 1. No orthogonal constrain/no explicit orthogonalization
- 2. Exactly quartic line search for steepest descent or conjugate gradient
- 3. Reuse the converged solution in the previous SCF iteration as the initial guess
- 4. Possible extension to a linear scaling method

Conclusions

- 1. Most chemistry and physics simulations codes rely on external community supported libraries for linear algebra (Scalapack, ELPA, Elemental, etc).
- 2. The solution of eigen value problems is one of the most computational demanding procedure in atomic-scale calculations. For example, within the Kohn-Sham scheme, this effort could cost 60% of the total calculation time.
- 3. ELSI is a library that offers fast alternatives to solve the one of the major bottlenecks in Density Functional Theory which is the minimization of the energy.
- 4. ELSI library is the conjunction of well established algorithms with the aim to speed up electronic structure calculations in massive parallel environments.
- 5. Some ELSI stakeholders and partner codes have thousands of users. We aim to benefit a wide spectrum of scientists.
- 6. We plan to support both graphic accelerators and many-core architectures to make the most with DOE's CPU/hrs.

Thanks...

